home *** CD-ROM | disk | FTP | other *** search
Text File | 1991-10-29 | 55.3 KB | 1,789 lines |
- Newsgroups: comp.sources.misc
- From: daveg@synaptics.com (David Gillespie)
- Subject: v24i058: gnucalc - GNU Emacs Calculator, v2.00, Part10/56
- Message-ID: <1991Oct29.230026.20140@sparky.imd.sterling.com>
- X-Md4-Signature: 017f2514de54b02b0b894f816e81dee4
- Date: Tue, 29 Oct 1991 23:00:26 GMT
- Approved: kent@sparky.imd.sterling.com
-
- Submitted-by: daveg@synaptics.com (David Gillespie)
- Posting-number: Volume 24, Issue 58
- Archive-name: gnucalc/part10
- Environment: Emacs
- Supersedes: gmcalc: Volume 13, Issue 27-45
-
- ---- Cut Here and unpack ----
- #!/bin/sh
- # this is Part.10 (part 10 of a multipart archive)
- # do not concatenate these parts, unpack them in order with /bin/sh
- # file calc-bin.el continued
- #
- if test ! -r _shar_seq_.tmp; then
- echo 'Please unpack part 1 first!'
- exit 1
- fi
- (read Scheck
- if test "$Scheck" != 10; then
- echo Please unpack part "$Scheck" next!
- exit 1
- else
- exit 0
- fi
- ) < _shar_seq_.tmp || exit 1
- if test ! -f _shar_wnt_.tmp; then
- echo 'x - still skipping calc-bin.el'
- else
- echo 'x - continuing file calc-bin.el'
- sed 's/^X//' << 'SHAR_EOF' >> 'calc-bin.el' &&
- X (interactive "NDisplay radix (2-36): ")
- X (calc-wrapper
- X (if (and (>= n 2) (<= n 36))
- X (progn
- X (calc-change-mode 'calc-number-radix n t)
- X ;; also change global value so minibuffer sees it
- X (setq-default calc-number-radix calc-number-radix))
- X (setq n calc-number-radix))
- X (message "Number radix is %d." n))
- )
- X
- (defun calc-decimal-radix ()
- X (interactive)
- X (calc-radix 10)
- )
- X
- (defun calc-binary-radix ()
- X (interactive)
- X (calc-radix 2)
- )
- X
- (defun calc-octal-radix ()
- X (interactive)
- X (calc-radix 8)
- )
- X
- (defun calc-hex-radix ()
- X (interactive)
- X (calc-radix 16)
- )
- X
- (defun calc-leading-zeros (n)
- X (interactive "P")
- X (calc-wrapper
- X (if (calc-change-mode 'calc-leading-zeros n t t)
- X (message "Zero-padding integers to %d digits (assuming radix %d)."
- X (let* ((calc-internal-prec 6))
- X (math-compute-max-digits (math-abs calc-word-size)
- X calc-number-radix))
- X calc-number-radix)
- X (message "Omitting leading zeros on integers.")))
- )
- X
- X
- (defvar math-power-of-2-cache (list 1 2 4 8 16 32 64 128 256 512 1024))
- (defvar math-big-power-of-2-cache nil)
- (defun math-power-of-2 (n) ; [I I] [Public]
- X (if (and (natnump n) (<= n 100))
- X (or (nth n math-power-of-2-cache)
- X (let* ((i (length math-power-of-2-cache))
- X (val (nth (1- i) math-power-of-2-cache)))
- X (while (<= i n)
- X (setq val (math-mul val 2)
- X math-power-of-2-cache (nconc math-power-of-2-cache
- X (list val))
- X i (1+ i)))
- X val))
- X (let ((found (assq n math-big-power-of-2-cache)))
- X (if found
- X (cdr found)
- X (let ((po2 (math-ipow 2 n)))
- X (setq math-big-power-of-2-cache
- X (cons (cons n po2) math-big-power-of-2-cache))
- X po2))))
- )
- X
- (defun math-integer-log2 (n) ; [I I] [Public]
- X (let ((i 0)
- X (p math-power-of-2-cache)
- X val)
- X (while (and p (Math-natnum-lessp (setq val (car p)) n))
- X (setq p (cdr p)
- X i (1+ i)))
- X (if p
- X (and (equal val n)
- X i)
- X (while (Math-natnum-lessp
- X (prog1
- X (setq val (math-mul val 2))
- X (setq math-power-of-2-cache (nconc math-power-of-2-cache
- X (list val))))
- X n)
- X (setq i (1+ i)))
- X (and (equal val n)
- X i)))
- )
- X
- X
- X
- X
- ;;; Bitwise operations.
- X
- (defun calcFunc-and (a b &optional w) ; [I I I] [Public]
- X (cond ((Math-messy-integerp w)
- X (calcFunc-and a b (math-trunc w)))
- X ((and w (not (integerp w)))
- X (math-reject-arg w 'fixnump))
- X ((and (integerp a) (integerp b))
- X (math-clip (logand a b) w))
- X ((or (eq (car-safe a) 'mod) (eq (car-safe b) 'mod))
- X (math-binary-modulo-args 'calcFunc-and a b w))
- X ((not (Math-num-integerp a))
- X (math-reject-arg a 'integerp))
- X ((not (Math-num-integerp b))
- X (math-reject-arg b 'integerp))
- X (t (math-clip (cons 'bigpos
- X (math-and-bignum (math-binary-arg a w)
- X (math-binary-arg b w)))
- X w)))
- )
- X
- (defun math-binary-arg (a w)
- X (if (not (Math-integerp a))
- X (setq a (math-trunc a)))
- X (if (Math-integer-negp a)
- X (math-not-bignum (cdr (math-bignum-test (math-sub -1 a)))
- X (math-abs (if w (math-trunc w) calc-word-size)))
- X (cdr (Math-bignum-test a)))
- )
- X
- (defun math-binary-modulo-args (f a b w)
- X (let (mod)
- X (if (eq (car-safe a) 'mod)
- X (progn
- X (setq mod (nth 2 a)
- X a (nth 1 a))
- X (if (eq (car-safe b) 'mod)
- X (if (equal mod (nth 2 b))
- X (setq b (nth 1 b))
- X (math-reject-arg b "*Inconsistent modulos"))))
- X (setq mod (nth 2 b)
- X b (nth 1 b)))
- X (if (Math-messy-integerp mod)
- X (setq mod (math-trunc mod))
- X (or (Math-integerp mod)
- X (math-reject-arg mod 'integerp)))
- X (let ((bits (math-integer-log2 mod)))
- X (if bits
- X (if w
- X (if (/= w bits)
- X (calc-record-why
- X "*Warning: Modulo inconsistent with word size"))
- X (setq w bits))
- X (calc-record-why "*Warning: Modulo is not a power of 2"))
- X (math-make-mod (if b
- X (funcall f a b w)
- X (funcall f a w))
- X mod)))
- )
- X
- (defun math-and-bignum (a b) ; [l l l]
- X (and a b
- X (let ((qa (math-div-bignum-digit a 512))
- X (qb (math-div-bignum-digit b 512)))
- X (math-mul-bignum-digit (math-and-bignum (math-norm-bignum (car qa))
- X (math-norm-bignum (car qb)))
- X 512
- X (logand (cdr qa) (cdr qb)))))
- )
- X
- (defun calcFunc-or (a b &optional w) ; [I I I] [Public]
- X (cond ((Math-messy-integerp w)
- X (calcFunc-or a b (math-trunc w)))
- X ((and w (not (integerp w)))
- X (math-reject-arg w 'fixnump))
- X ((and (integerp a) (integerp b))
- X (math-clip (logior a b) w))
- X ((or (eq (car-safe a) 'mod) (eq (car-safe b) 'mod))
- X (math-binary-modulo-args 'calcFunc-or a b w))
- X ((not (Math-num-integerp a))
- X (math-reject-arg a 'integerp))
- X ((not (Math-num-integerp b))
- X (math-reject-arg b 'integerp))
- X (t (math-clip (cons 'bigpos
- X (math-or-bignum (math-binary-arg a w)
- X (math-binary-arg b w)))
- X w)))
- )
- X
- (defun math-or-bignum (a b) ; [l l l]
- X (and (or a b)
- X (let ((qa (math-div-bignum-digit a 512))
- X (qb (math-div-bignum-digit b 512)))
- X (math-mul-bignum-digit (math-or-bignum (math-norm-bignum (car qa))
- X (math-norm-bignum (car qb)))
- X 512
- X (logior (cdr qa) (cdr qb)))))
- )
- X
- (defun calcFunc-xor (a b &optional w) ; [I I I] [Public]
- X (cond ((Math-messy-integerp w)
- X (calcFunc-xor a b (math-trunc w)))
- X ((and w (not (integerp w)))
- X (math-reject-arg w 'fixnump))
- X ((and (integerp a) (integerp b))
- X (math-clip (logxor a b) w))
- X ((or (eq (car-safe a) 'mod) (eq (car-safe b) 'mod))
- X (math-binary-modulo-args 'calcFunc-xor a b w))
- X ((not (Math-num-integerp a))
- X (math-reject-arg a 'integerp))
- X ((not (Math-num-integerp b))
- X (math-reject-arg b 'integerp))
- X (t (math-clip (cons 'bigpos
- X (math-xor-bignum (math-binary-arg a w)
- X (math-binary-arg b w)))
- X w)))
- )
- X
- (defun math-xor-bignum (a b) ; [l l l]
- X (and (or a b)
- X (let ((qa (math-div-bignum-digit a 512))
- X (qb (math-div-bignum-digit b 512)))
- X (math-mul-bignum-digit (math-xor-bignum (math-norm-bignum (car qa))
- X (math-norm-bignum (car qb)))
- X 512
- X (logxor (cdr qa) (cdr qb)))))
- )
- X
- (defun calcFunc-diff (a b &optional w) ; [I I I] [Public]
- X (cond ((Math-messy-integerp w)
- X (calcFunc-diff a b (math-trunc w)))
- X ((and w (not (integerp w)))
- X (math-reject-arg w 'fixnump))
- X ((and (integerp a) (integerp b))
- X (math-clip (logand a (lognot b)) w))
- X ((or (eq (car-safe a) 'mod) (eq (car-safe b) 'mod))
- X (math-binary-modulo-args 'calcFunc-diff a b w))
- X ((not (Math-num-integerp a))
- X (math-reject-arg a 'integerp))
- X ((not (Math-num-integerp b))
- X (math-reject-arg b 'integerp))
- X (t (math-clip (cons 'bigpos
- X (math-diff-bignum (math-binary-arg a w)
- X (math-binary-arg b w)))
- X w)))
- )
- X
- (defun math-diff-bignum (a b) ; [l l l]
- X (and a
- X (let ((qa (math-div-bignum-digit a 512))
- X (qb (math-div-bignum-digit b 512)))
- X (math-mul-bignum-digit (math-diff-bignum (math-norm-bignum (car qa))
- X (math-norm-bignum (car qb)))
- X 512
- X (logand (cdr qa) (lognot (cdr qb))))))
- )
- X
- (defun calcFunc-not (a &optional w) ; [I I] [Public]
- X (cond ((Math-messy-integerp w)
- X (calcFunc-not a (math-trunc w)))
- X ((eq (car-safe a) 'mod)
- X (math-binary-modulo-args 'calcFunc-not a nil w))
- X ((and w (not (integerp w)))
- X (math-reject-arg w 'fixnump))
- X ((not (Math-num-integerp a))
- X (math-reject-arg a 'integerp))
- X ((< (or w (setq w calc-word-size)) 0)
- X (math-clip (calcFunc-not a (- w)) w))
- X (t (math-normalize
- X (cons 'bigpos
- X (math-not-bignum (math-binary-arg a w)
- X w)))))
- )
- X
- (defun math-not-bignum (a w) ; [l l]
- X (let ((q (math-div-bignum-digit a 512)))
- X (if (<= w 9)
- X (list (logand (lognot (cdr q))
- X (1- (lsh 1 w))))
- X (math-mul-bignum-digit (math-not-bignum (math-norm-bignum (car q))
- X (- w 9))
- X 512
- X (logxor (cdr q) 511))))
- )
- X
- (defun calcFunc-lsh (a &optional n w) ; [I I] [Public]
- X (setq a (math-trunc a)
- X n (if n (math-trunc n) 1))
- X (if (eq (car-safe a) 'mod)
- X (math-binary-modulo-args 'calcFunc-lsh a n w)
- X (setq w (if w (math-trunc w) calc-word-size))
- X (or (integerp w)
- X (math-reject-arg w 'fixnump))
- X (or (Math-integerp a)
- X (math-reject-arg a 'integerp))
- X (or (Math-integerp n)
- X (math-reject-arg n 'integerp))
- X (if (< w 0)
- X (math-clip (calcFunc-lsh a n (- w)) w)
- X (if (Math-integer-negp a)
- X (setq a (math-clip a w)))
- X (cond ((or (Math-lessp n (- w))
- X (Math-lessp w n))
- X 0)
- X ((< n 0)
- X (math-quotient (math-clip a w) (math-power-of-2 (- n))))
- X (t
- X (math-clip (math-mul a (math-power-of-2 n)) w)))))
- )
- X
- (defun calcFunc-rsh (a &optional n w) ; [I I] [Public]
- X (calcFunc-lsh a (math-neg (or n 1)) w)
- )
- X
- (defun calcFunc-ash (a &optional n w) ; [I I] [Public]
- X (if (or (null n)
- X (not (Math-negp n)))
- X (calcFunc-lsh a n w)
- X (setq a (math-trunc a)
- X n (if n (math-trunc n) 1))
- X (if (eq (car-safe a) 'mod)
- X (math-binary-modulo-args 'calcFunc-ash a n w)
- X (setq w (if w (math-trunc w) calc-word-size))
- X (or (integerp w)
- X (math-reject-arg w 'fixnump))
- X (or (Math-integerp a)
- X (math-reject-arg a 'integerp))
- X (or (Math-integerp n)
- X (math-reject-arg n 'integerp))
- X (if (< w 0)
- X (math-clip (calcFunc-ash a n (- w)) w)
- X (if (Math-integer-negp a)
- X (setq a (math-clip a w)))
- X (let ((two-to-sizem1 (math-power-of-2 (1- w)))
- X (sh (calcFunc-lsh a n w)))
- X (cond ((Math-natnum-lessp a two-to-sizem1)
- X sh)
- X ((Math-lessp n (- 1 w))
- X (math-add (math-mul two-to-sizem1 2) -1))
- X (t (let ((two-to-n (math-power-of-2 (- n))))
- X (math-add (calcFunc-lsh (math-add two-to-n -1)
- X (+ w n) w)
- X sh))))))))
- )
- X
- (defun calcFunc-rash (a &optional n w) ; [I I] [Public]
- X (calcFunc-ash a (math-neg (or n 1)) w)
- )
- X
- (defun calcFunc-rot (a &optional n w) ; [I I] [Public]
- X (setq a (math-trunc a)
- X n (if n (math-trunc n) 1))
- X (if (eq (car-safe a) 'mod)
- X (math-binary-modulo-args 'calcFunc-rot a n w)
- X (setq w (if w (math-trunc w) calc-word-size))
- X (or (integerp w)
- X (math-reject-arg w 'fixnump))
- X (or (Math-integerp a)
- X (math-reject-arg a 'integerp))
- X (or (Math-integerp n)
- X (math-reject-arg n 'integerp))
- X (if (< w 0)
- X (math-clip (calcFunc-rot a n (- w)) w)
- X (if (Math-integer-negp a)
- X (setq a (math-clip a w)))
- X (cond ((or (Math-integer-negp n)
- X (not (Math-natnum-lessp n w)))
- X (calcFunc-rot a (math-mod n w) w))
- X (t
- X (math-add (calcFunc-lsh a (- n w) w)
- X (calcFunc-lsh a n w))))))
- )
- X
- (defun math-clip (a &optional w) ; [I I] [Public]
- X (cond ((Math-messy-integerp w)
- X (math-clip a (math-trunc w)))
- X ((eq (car-safe a) 'mod)
- X (math-binary-modulo-args 'math-clip a nil w))
- X ((and w (not (integerp w)))
- X (math-reject-arg w 'fixnump))
- X ((not (Math-num-integerp a))
- X (math-reject-arg a 'integerp))
- X ((< (or w (setq w calc-word-size)) 0)
- X (setq a (math-clip a (- w)))
- X (if (Math-natnum-lessp a (math-power-of-2 (- -1 w)))
- X a
- X (math-sub a (math-power-of-2 (- w)))))
- X ((Math-negp a)
- X (math-normalize (cons 'bigpos (math-binary-arg a w))))
- X ((and (integerp a) (< a 1000000))
- X (if (>= w 20)
- X a
- X (logand a (1- (lsh 1 w)))))
- X (t
- X (math-normalize
- X (cons 'bigpos
- X (math-clip-bignum (cdr (math-bignum-test (math-trunc a)))
- X w)))))
- )
- (fset 'calcFunc-clip (symbol-function 'math-clip))
- X
- (defun math-clip-bignum (a w) ; [l l]
- X (let ((q (math-div-bignum-digit a 512)))
- X (if (<= w 9)
- X (list (logand (cdr q)
- X (1- (lsh 1 w))))
- X (math-mul-bignum-digit (math-clip-bignum (math-norm-bignum (car q))
- X (- w 9))
- X 512
- X (cdr q))))
- )
- X
- X
- X
- X
- (defvar math-max-digits-cache nil)
- (defun math-compute-max-digits (w r)
- X (let* ((pair (+ (* r 100000) w))
- X (res (assq pair math-max-digits-cache)))
- X (if res
- X (cdr res)
- X (let* ((calc-command-flags nil)
- X (digs (math-ceiling (math-div w (math-real-log2 r)))))
- X (setq math-max-digits-cache (cons (cons pair digs)
- X math-max-digits-cache))
- X digs)))
- )
- X
- (defvar math-log2-cache (list '(2 . 1)
- X '(4 . 2)
- X '(8 . 3)
- X '(10 . (float 332193 -5))
- X '(16 . 4)
- X '(32 . 5)))
- (defun math-real-log2 (x) ;;; calc-internal-prec must be 6
- X (let ((res (assq x math-log2-cache)))
- X (if res
- X (cdr res)
- X (let* ((calc-symbolic-mode nil)
- X (calc-display-working-message nil)
- X (log (calcFunc-log x 2)))
- X (setq math-log2-cache (cons (cons x log) math-log2-cache))
- X log)))
- )
- X
- (defconst math-radix-digits ["0" "1" "2" "3" "4" "5" "6" "7" "8" "9"
- X "A" "B" "C" "D" "E" "F" "G" "H" "I" "J"
- X "K" "L" "M" "N" "O" "P" "Q" "R" "S" "T"
- X "U" "V" "W" "X" "Y" "Z"])
- X
- (defun math-format-radix (a) ; [X S]
- X (if (< a calc-number-radix)
- X (if (< a 0)
- X (concat "-" (math-format-radix (- a)))
- X (math-format-radix-digit a))
- X (let ((s ""))
- X (while (> a 0)
- X (setq s (concat (math-format-radix-digit (% a calc-number-radix)) s)
- X a (/ a calc-number-radix)))
- X s))
- )
- X
- (defconst math-binary-digits ["000" "001" "010" "011"
- X "100" "101" "110" "111"])
- (defun math-format-binary (a) ; [X S]
- X (if (< a 8)
- X (if (< a 0)
- X (concat "-" (math-format-binary (- a)))
- X (math-format-radix a))
- X (let ((s ""))
- X (while (> a 7)
- X (setq s (concat (aref math-binary-digits (% a 8)) s)
- X a (/ a 8)))
- X (concat (math-format-radix a) s)))
- )
- X
- (defun math-format-bignum-radix (a) ; [X L]
- X (cond ((null a) "0")
- X ((and (null (cdr a))
- X (< (car a) calc-number-radix))
- X (math-format-radix-digit (car a)))
- X (t
- X (let ((q (math-div-bignum-digit a calc-number-radix)))
- X (concat (math-format-bignum-radix (math-norm-bignum (car q)))
- X (math-format-radix-digit (cdr q))))))
- )
- X
- (defun math-format-bignum-binary (a) ; [X L]
- X (cond ((null a) "0")
- X ((null (cdr a))
- X (math-format-binary (car a)))
- X (t
- X (let ((q (math-div-bignum-digit a 512)))
- X (concat (math-format-bignum-binary (math-norm-bignum (car q)))
- X (aref math-binary-digits (/ (cdr q) 64))
- X (aref math-binary-digits (% (/ (cdr q) 8) 8))
- X (aref math-binary-digits (% (cdr q) 8))))))
- )
- X
- (defun math-format-bignum-octal (a) ; [X L]
- X (cond ((null a) "0")
- X ((null (cdr a))
- X (math-format-radix (car a)))
- X (t
- X (let ((q (math-div-bignum-digit a 512)))
- X (concat (math-format-bignum-octal (math-norm-bignum (car q)))
- X (math-format-radix-digit (/ (cdr q) 64))
- X (math-format-radix-digit (% (/ (cdr q) 8) 8))
- X (math-format-radix-digit (% (cdr q) 8))))))
- )
- X
- (defun math-format-bignum-hex (a) ; [X L]
- X (cond ((null a) "0")
- X ((null (cdr a))
- X (math-format-radix (car a)))
- X (t
- X (let ((q (math-div-bignum-digit a 256)))
- X (concat (math-format-bignum-hex (math-norm-bignum (car q)))
- X (math-format-radix-digit (/ (cdr q) 16))
- X (math-format-radix-digit (% (cdr q) 16))))))
- )
- X
- ;;; Decompose into integer and fractional parts, without depending
- ;;; on calc-internal-prec.
- (defun math-float-parts (a need-frac) ; returns ( int frac fracdigs )
- X (if (>= (nth 2 a) 0)
- X (list (math-scale-rounding (nth 1 a) (nth 2 a)) '(float 0 0) 0)
- X (let* ((d (math-numdigs (nth 1 a)))
- X (n (- (nth 2 a))))
- X (if need-frac
- X (if (>= n d)
- X (list 0 a n)
- X (let ((qr (math-idivmod (nth 1 a) (math-scale-int 1 n))))
- X (list (car qr) (math-make-float (cdr qr) (- n)) n)))
- X (list (math-scale-rounding (nth 1 a) (nth 2 a))
- X '(float 0 0) 0))))
- )
- X
- (defun math-format-radix-float (a prec)
- X (let ((fmt (car calc-float-format))
- X (figs (nth 1 calc-float-format))
- X (point calc-point-char)
- X (str nil))
- X (if (eq fmt 'fix)
- X (let* ((afigs (math-abs figs))
- X (fp (math-float-parts a (> afigs 0)))
- X (calc-internal-prec (+ 3 (max (nth 2 fp)
- X (math-convert-radix-digits
- X afigs t))))
- X (int (car fp))
- X (frac (math-round (math-mul (math-normalize (nth 1 fp))
- X (math-radix-float-power afigs)))))
- X (if (not (and (math-zerop frac) (math-zerop int) (< figs 0)))
- X (let ((math-radix-explicit-format nil))
- X (let ((calc-group-digits nil))
- X (setq str (if (> afigs 0) (math-format-number frac) ""))
- X (if (< (length str) afigs)
- X (setq str (concat (make-string (- afigs (length str)) ?0)
- X str))
- X (if (> (length str) afigs)
- X (setq str (substring str 1)
- X int (math-add int 1))))
- X (setq str (concat (math-format-number int) point str)))
- X (if calc-group-digits
- X (setq str (math-group-float str))))
- X (setq figs 0))))
- X (or str
- X (let* ((prec calc-internal-prec)
- X (afigs (if (> figs 0)
- X figs
- X (max 1 (+ figs
- X (1- (math-convert-radix-digits
- X (max prec
- X (math-numdigs (nth 1 a)))))))))
- X (calc-internal-prec (+ 3 (math-convert-radix-digits afigs t)))
- X (explo -1) (vlo (math-radix-float-power explo))
- X (exphi 1) (vhi (math-radix-float-power exphi))
- X expmid vmid eadj)
- X (setq a (math-normalize a))
- X (if (Math-zerop a)
- X (setq explo 0)
- X (if (math-lessp-float '(float 1 0) a)
- X (while (not (math-lessp-float a vhi))
- X (setq explo exphi vlo vhi
- X exphi (math-mul exphi 2)
- X vhi (math-radix-float-power exphi)))
- X (while (math-lessp-float a vlo)
- X (setq exphi explo vhi vlo
- X explo (math-mul explo 2)
- X vlo (math-radix-float-power explo))))
- X (while (not (eq (math-sub exphi explo) 1))
- X (setq expmid (math-div2 (math-add explo exphi))
- X vmid (math-radix-float-power expmid))
- X (if (math-lessp-float a vmid)
- X (setq exphi expmid vhi vmid)
- X (setq explo expmid vlo vmid)))
- X (setq a (math-div-float a vlo)))
- X (let* ((sc (math-round (math-mul a (math-radix-float-power
- X (1- afigs)))))
- X (math-radix-explicit-format nil))
- X (let ((calc-group-digits nil))
- X (setq str (math-format-number sc))))
- X (if (> (length str) afigs)
- X (setq str (substring str 0 -1)
- X explo (1+ explo)))
- X (if (and (eq fmt 'float)
- X (math-lessp explo (+ (if (= figs 0)
- X (1- (math-convert-radix-digits
- X prec))
- X afigs)
- X calc-display-sci-high 1))
- X (math-lessp calc-display-sci-low explo))
- X (let ((dpos (1+ explo)))
- X (cond ((<= dpos 0)
- X (setq str (concat "0" point (make-string (- dpos) ?0)
- X str)))
- X ((> dpos (length str))
- X (setq str (concat str (make-string (- dpos (length str))
- X ?0) point)))
- X (t
- X (setq str (concat (substring str 0 dpos) point
- X (substring str dpos)))))
- X (setq explo nil))
- X (setq eadj (if (eq fmt 'eng)
- X (min (math-mod explo 3) (length str))
- X 0)
- X str (concat (substring str 0 (1+ eadj)) point
- X (substring str (1+ eadj)))))
- X (setq pos (length str))
- X (while (eq (aref str (1- pos)) ?0) (setq pos (1- pos)))
- X (and explo (eq (aref str (1- pos)) ?.) (setq pos (1- pos)))
- X (setq str (substring str 0 pos))
- X (if calc-group-digits
- X (setq str (math-group-float str)))
- X (if explo
- X (let ((estr (let ((calc-number-radix 10)
- X (calc-group-digits nil))
- X (setq estr (math-format-number
- X (math-sub explo eadj))))))
- X (setq str (if (or (memq calc-language '(math maple))
- X (> calc-number-radix 14))
- X (format "%s*%d.^%s" str calc-number-radix estr)
- X (format "%se%s" str estr)))))))
- X str)
- )
- X
- (defun math-convert-radix-digits (n &optional to-dec)
- X (let ((key (cons n (cons to-dec calc-number-radix))))
- X (or (cdr (assoc key math-radix-digits-cache))
- X (let* ((calc-internal-prec 6)
- X (log (math-div (math-real-log2 calc-number-radix)
- X '(float 332193 -5))))
- X (cdr (car (setq math-radix-digits-cache
- X (cons (cons key (math-ceiling (if to-dec
- X (math-mul n log)
- X (math-div n log))))
- X math-radix-digits-cache)))))))
- )
- (setq math-radix-digits-cache nil)
- X
- (defun math-radix-float-power (n)
- X (if (eq n 0)
- X '(float 1 0)
- X (or (and (eq calc-number-radix (car math-radix-float-cache-tag))
- X (<= calc-internal-prec (cdr math-radix-float-cache-tag)))
- X (setq math-radix-float-cache-tag (cons calc-number-radix
- X calc-internal-prec)
- X math-radix-float-cache nil))
- X (math-normalize
- X (or (cdr (assoc n math-radix-float-cache))
- X (cdr (car (setq math-radix-float-cache
- X (cons (cons
- X n
- X (let ((calc-internal-prec
- X (cdr math-radix-float-cache-tag)))
- X (if (math-negp n)
- X (math-div-float '(float 1 0)
- X (math-radix-float-power
- X (math-neg n)))
- X (math-mul-float (math-sqr-float
- X (math-radix-float-power
- X (math-div2 n)))
- X (if (math-evenp n)
- X '(float 1 0)
- X (math-float
- X calc-number-radix))))))
- X math-radix-float-cache)))))))
- )
- (setq math-radix-float-cache-tag nil)
- X
- SHAR_EOF
- echo 'File calc-bin.el is complete' &&
- chmod 0644 calc-bin.el ||
- echo 'restore of calc-bin.el failed'
- Wc_c="`wc -c < 'calc-bin.el'`"
- test 24864 -eq "$Wc_c" ||
- echo 'calc-bin.el: original size 24864, current size' "$Wc_c"
- rm -f _shar_wnt_.tmp
- fi
- # ============= calc-comb.el ==============
- if test -f 'calc-comb.el' -a X"$1" != X"-c"; then
- echo 'x - skipping calc-comb.el (File already exists)'
- rm -f _shar_wnt_.tmp
- else
- > _shar_wnt_.tmp
- echo 'x - extracting calc-comb.el (Text)'
- sed 's/^X//' << 'SHAR_EOF' > 'calc-comb.el' &&
- ;; Calculator for GNU Emacs, part II [calc-comb.el]
- ;; Copyright (C) 1990, 1991 Free Software Foundation, Inc.
- ;; Written by Dave Gillespie, daveg@csvax.cs.caltech.edu.
- X
- ;; This file is part of GNU Emacs.
- X
- ;; GNU Emacs is distributed in the hope that it will be useful,
- ;; but WITHOUT ANY WARRANTY. No author or distributor
- ;; accepts responsibility to anyone for the consequences of using it
- ;; or for whether it serves any particular purpose or works at all,
- ;; unless he says so in writing. Refer to the GNU Emacs General Public
- ;; License for full details.
- X
- ;; Everyone is granted permission to copy, modify and redistribute
- ;; GNU Emacs, but only under the conditions described in the
- ;; GNU Emacs General Public License. A copy of this license is
- ;; supposed to have been given to you along with GNU Emacs so you
- ;; can know your rights and responsibilities. It should be in a
- ;; file named COPYING. Among other things, the copyright notice
- ;; and this notice must be preserved on all copies.
- X
- X
- X
- ;; This file is autoloaded from calc-ext.el.
- (require 'calc-ext)
- X
- (require 'calc-macs)
- X
- (defun calc-Need-calc-comb () nil)
- X
- X
- ;;; Combinatorics
- X
- (defun calc-gcd (arg)
- X (interactive "P")
- X (calc-slow-wrapper
- X (calc-binary-op "gcd" 'calcFunc-gcd arg))
- )
- X
- (defun calc-lcm (arg)
- X (interactive "P")
- X (calc-slow-wrapper
- X (calc-binary-op "lcm" 'calcFunc-lcm arg))
- )
- X
- (defun calc-extended-gcd ()
- X (interactive)
- X (calc-slow-wrapper
- X (calc-enter-result 2 "egcd" (cons 'calcFunc-egcd (calc-top-list-n 2))))
- )
- X
- (defun calc-factorial (arg)
- X (interactive "P")
- X (calc-slow-wrapper
- X (calc-unary-op "fact" 'calcFunc-fact arg))
- )
- X
- (defun calc-gamma (arg)
- X (interactive "P")
- X (calc-slow-wrapper
- X (calc-unary-op "gmma" 'calcFunc-gamma arg))
- )
- X
- (defun calc-double-factorial (arg)
- X (interactive "P")
- X (calc-slow-wrapper
- X (calc-unary-op "dfac" 'calcFunc-dfact arg))
- )
- X
- (defun calc-choose (arg)
- X (interactive "P")
- X (calc-slow-wrapper
- X (if (calc-is-hyperbolic)
- X (calc-binary-op "perm" 'calcFunc-perm arg)
- X (calc-binary-op "chos" 'calcFunc-choose arg)))
- )
- X
- (defun calc-perm (arg)
- X (interactive "P")
- X (calc-hyperbolic-func)
- X (calc-choose arg)
- )
- X
- (defvar calc-last-random-limit '(float 1 0))
- (defun calc-random (n)
- X (interactive "P")
- X (calc-slow-wrapper
- X (if n
- X (calc-enter-result 0 "rand" (list 'calcFunc-random
- X (calc-get-random-limit
- X (prefix-numeric-value n))))
- X (calc-enter-result 1 "rand" (list 'calcFunc-random
- X (calc-get-random-limit
- X (calc-top-n 1))))))
- )
- X
- (defun calc-get-random-limit (val)
- X (if (eq val 0)
- X calc-last-random-limit
- X (setq calc-last-random-limit val))
- )
- X
- (defun calc-rrandom ()
- X (interactive)
- X (calc-slow-wrapper
- X (setq calc-last-random-limit '(float 1 0))
- X (calc-enter-result 0 "rand" (list 'calcFunc-random '(float 1 0))))
- )
- X
- (defun calc-random-again (arg)
- X (interactive "p")
- X (calc-slow-wrapper
- X (while (>= (setq arg (1- arg)) 0)
- X (calc-enter-result 0 "rand" (list 'calcFunc-random
- X calc-last-random-limit))))
- )
- X
- (defun calc-shuffle (n)
- X (interactive "P")
- X (calc-slow-wrapper
- X (if n
- X (calc-enter-result 1 "shuf" (list 'calcFunc-shuffle
- X (prefix-numeric-value n)
- X (calc-get-random-limit
- X (calc-top-n 1))))
- X (calc-enter-result 2 "shuf" (list 'calcFunc-shuffle
- X (calc-top-n 1)
- X (calc-get-random-limit
- X (calc-top-n 2))))))
- )
- X
- (defun calc-report-prime-test (res)
- X (cond ((eq (car res) t)
- X (calc-record-message "prim" "Prime (guaranteed)"))
- X ((eq (car res) nil)
- X (if (cdr res)
- X (if (eq (nth 1 res) 'unknown)
- X (calc-record-message
- X "prim" "Non-prime (factors unknown)")
- X (calc-record-message
- X "prim" "Non-prime (%s is a factor)"
- X (math-format-number (nth 1 res))))
- X (calc-record-message "prim" "Non-prime")))
- X (t
- X (calc-record-message
- X "prim" "Probably prime (%d iters; %s%% chance of error)"
- X (nth 1 res)
- X (let ((calc-float-format '(fix 2)))
- X (math-format-number (nth 2 res))))))
- )
- X
- (defun calc-prime-test (iters)
- X (interactive "p")
- X (calc-slow-wrapper
- X (let* ((n (calc-top-n 1))
- X (res (math-prime-test n iters)))
- X (calc-report-prime-test res)))
- )
- X
- (defun calc-next-prime (iters)
- X (interactive "p")
- X (calc-slow-wrapper
- X (let ((calc-verbose-nextprime t))
- X (if (calc-is-inverse)
- X (calc-enter-result 1 "prvp" (list 'calcFunc-prevprime
- X (calc-top-n 1) (math-abs iters)))
- X (calc-enter-result 1 "nxtp" (list 'calcFunc-nextprime
- X (calc-top-n 1) (math-abs iters))))))
- )
- X
- (defun calc-prev-prime (iters)
- X (interactive "p")
- X (calc-invert-func)
- X (calc-next-prime iters)
- )
- X
- (defun calc-prime-factors (iters)
- X (interactive "p")
- X (calc-slow-wrapper
- X (let ((res (calcFunc-prfac (calc-top-n 1))))
- X (if (not math-prime-factors-finished)
- X (calc-record-message "pfac" "Warning: May not be fully factored"))
- X (calc-enter-result 1 "pfac" res)))
- )
- X
- (defun calc-totient (arg)
- X (interactive "P")
- X (calc-slow-wrapper
- X (calc-unary-op "phi" 'calcFunc-totient arg))
- )
- X
- (defun calc-moebius (arg)
- X (interactive "P")
- X (calc-slow-wrapper
- X (calc-unary-op "mu" 'calcFunc-moebius arg))
- )
- X
- X
- X
- X
- X
- (defun calcFunc-gcd (a b)
- X (if (Math-messy-integerp a)
- X (setq a (math-trunc a)))
- X (if (Math-messy-integerp b)
- X (setq b (math-trunc b)))
- X (cond ((and (Math-integerp a) (Math-integerp b))
- X (math-gcd a b))
- X ((Math-looks-negp a)
- X (calcFunc-gcd (math-neg a) b))
- X ((Math-looks-negp b)
- X (calcFunc-gcd a (math-neg b)))
- X ((Math-zerop a) b)
- X ((Math-zerop b) a)
- X ((and (Math-ratp a)
- X (Math-ratp b))
- X (math-make-frac (math-gcd (if (eq (car-safe a) 'frac) (nth 1 a) a)
- X (if (eq (car-safe b) 'frac) (nth 1 b) b))
- X (calcFunc-lcm
- X (if (eq (car-safe a) 'frac) (nth 2 a) 1)
- X (if (eq (car-safe b) 'frac) (nth 2 b) 1))))
- X ((not (Math-integerp a))
- X (calc-record-why 'integerp a)
- X (list 'calcFunc-gcd a b))
- X (t
- X (calc-record-why 'integerp b)
- X (list 'calcFunc-gcd a b)))
- )
- X
- (defun calcFunc-lcm (a b)
- X (let ((g (calcFunc-gcd a b)))
- X (if (Math-numberp g)
- X (math-div (math-mul a b) g)
- X (list 'calcFunc-lcm a b)))
- )
- X
- (defun calcFunc-egcd (a b) ; Knuth section 4.5.2
- X (cond
- X ((not (Math-integerp a))
- X (if (Math-messy-integerp a)
- X (calcFunc-egcd (math-trunc a) b)
- X (calc-record-why 'integerp a)
- X (list 'calcFunc-egcd a b)))
- X ((not (Math-integerp b))
- X (if (Math-messy-integerp b)
- X (calcFunc-egcd a (math-trunc b))
- X (calc-record-why 'integerp b)
- X (list 'calcFunc-egcd a b)))
- X (t
- X (let ((u1 1) (u2 0) (u3 a)
- X (v1 0) (v2 1) (v3 b)
- X t1 t2 q)
- X (while (not (eq v3 0))
- X (setq q (math-idivmod u3 v3)
- X t1 (math-sub u1 (math-mul v1 (car q)))
- X t2 (math-sub u2 (math-mul v2 (car q)))
- X u1 v1 u2 v2 u3 v3
- X v1 t1 v2 t2 v3 (cdr q)))
- X (list 'vec u3 u1 u2))))
- )
- X
- X
- ;;; Factorial and related functions.
- X
- (defun calcFunc-fact (n) ; [I I] [F F] [Public]
- X (let (temp)
- X (cond ((Math-integer-negp n)
- X (if calc-infinite-mode
- X '(var uinf var-uinf)
- X (math-reject-arg n 'range)))
- X ((integerp n)
- X (if (<= n 20)
- X (aref '[1 1 2 6 24 120 720 5040 40320 362880
- X (bigpos 800 628 3) (bigpos 800 916 39)
- X (bigpos 600 1 479) (bigpos 800 20 227 6)
- X (bigpos 200 291 178 87) (bigpos 0 368 674 307 1)
- X (bigpos 0 888 789 922 20) (bigpos 0 96 428 687 355)
- X (bigpos 0 728 705 373 402 6)
- X (bigpos 0 832 408 100 645 121)
- X (bigpos 0 640 176 8 902 432 2)] n)
- X (math-factorial-iter (1- n) 2 1)))
- X ((and (math-messy-integerp n)
- X (Math-lessp n 100))
- X (math-inexact-result)
- X (setq temp (math-trunc n))
- X (if (>= temp 0)
- X (if (<= temp 20)
- X (math-float (calcFunc-fact temp))
- X (math-with-extra-prec 1
- X (math-factorial-iter (1- temp) 2 '(float 1 0))))
- X (math-reject-arg n 'range)))
- X ((math-numberp n)
- X (let* ((q (math-quarter-integer n))
- X (tn (and q (Math-lessp n 1000) (Math-lessp -1000 n)
- X (1+ (math-floor n)))))
- X (cond ((and tn (= q 2)
- X (or calc-symbolic-mode (< (math-abs tn) 20)))
- X (let ((q (if (< tn 0)
- X (math-div
- X (math-pow -2 (- tn))
- X (math-double-factorial-iter (* -2 tn) 3 1 2))
- X (math-div
- X (math-double-factorial-iter (* 2 tn) 3 1 2)
- X (math-pow 2 tn)))))
- X (math-mul q (if calc-symbolic-mode
- X (list 'calcFunc-sqrt '(var pi var-pi))
- X (math-sqrt-pi)))))
- X ((and tn (>= tn 0) (< tn 20)
- X (memq q '(1 3)))
- X (math-inexact-result)
- X (math-div
- X (math-mul (math-double-factorial-iter (* 4 tn) q 1 4)
- X (if (= q 1) (math-gamma-1q) (math-gamma-3q)))
- X (math-pow 4 tn)))
- X (t
- X (math-inexact-result)
- X (math-with-extra-prec 3
- X (math-gammap1-raw (math-float n)))))))
- X ((equal n '(var inf var-inf)) n)
- X (t (calc-record-why 'numberp n)
- X (list 'calcFunc-fact n))))
- )
- X
- (math-defcache math-gamma-1q nil
- X (math-with-extra-prec 3
- X (math-gammap1-raw '(float -75 -2))))
- X
- (math-defcache math-gamma-3q nil
- X (math-with-extra-prec 3
- X (math-gammap1-raw '(float -25 -2))))
- X
- (defun math-factorial-iter (count n f)
- X (if (= (% n 5) 1)
- X (math-working (format "factorial(%d)" (1- n)) f))
- X (if (> count 0)
- X (math-factorial-iter (1- count) (1+ n) (math-mul n f))
- X f)
- )
- X
- (defun calcFunc-dfact (n) ; [I I] [F F] [Public]
- X (cond ((Math-integer-negp n)
- X (if (math-oddp n)
- X (if (eq n -1)
- X 1
- X (math-div (if (eq (math-mod n 4) 3) 1 -1)
- X (calcFunc-dfact (math-sub -2 n))))
- X (list 'calcFunc-dfact n)))
- X ((Math-zerop n) 1)
- X ((integerp n) (math-double-factorial-iter n (+ 2 (% n 2)) 1 2))
- X ((math-messy-integerp n)
- X (let ((temp (math-trunc n)))
- X (math-inexact-result)
- X (if (natnump temp)
- X (if (Math-lessp temp 200)
- X (math-with-extra-prec 1
- X (math-double-factorial-iter temp (+ 2 (% temp 2))
- X '(float 1 0) 2))
- X (let* ((half (math-div2 temp))
- X (even (math-mul (math-pow 2 half)
- X (calcFunc-fact (math-float half)))))
- X (if (math-evenp temp)
- X even
- X (math-div (calcFunc-fact n) even))))
- X (list 'calcFunc-dfact max))))
- X ((equal n '(var inf var-inf)) n)
- X (t (calc-record-why 'natnump n)
- X (list 'calcFunc-dfact n)))
- )
- X
- (defun math-double-factorial-iter (max n f step)
- X (if (< (% n 12) step)
- X (math-working (format "dfact(%d)" (- n step)) f))
- X (if (<= n max)
- X (math-double-factorial-iter max (+ n step) (math-mul n f) step)
- X f)
- )
- X
- (defun calcFunc-perm (n m) ; [I I I] [F F F] [Public]
- X (cond ((and (integerp n) (integerp m) (<= m n) (>= m 0))
- X (math-factorial-iter m (1+ (- n m)) 1))
- X ((or (not (math-num-integerp n))
- X (and (math-messy-integerp n) (Math-lessp 100 n))
- X (not (math-num-integerp m))
- X (and (math-messy-integerp m) (Math-lessp 100 m)))
- X (or (math-realp n) (equal n '(var inf var-inf))
- X (math-reject-arg n 'realp))
- X (or (math-realp m) (equal m '(var inf var-inf))
- X (math-reject-arg m 'realp))
- X (and (math-num-integerp n) (math-negp n) (math-reject-arg n 'range))
- X (and (math-num-integerp m) (math-negp m) (math-reject-arg m 'range))
- X (math-div (calcFunc-fact n) (calcFunc-fact (math-sub n m))))
- X (t
- X (let ((tn (math-trunc n))
- X (tm (math-trunc m)))
- X (math-inexact-result)
- X (or (integerp tn) (math-reject-arg tn 'fixnump))
- X (or (integerp tm) (math-reject-arg tm 'fixnump))
- X (or (and (<= tm tn) (>= tm 0)) (math-reject-arg tm 'range))
- X (math-with-extra-prec 1
- X (math-factorial-iter tm (1+ (- tn tm)) '(float 1 0))))))
- )
- X
- (defun calcFunc-choose (n m) ; [I I I] [F F F] [Public]
- X (cond ((and (integerp n) (integerp m) (<= m n) (>= m 0))
- X (if (> m (/ n 2))
- X (math-choose-iter (- n m) n 1 1)
- X (math-choose-iter m n 1 1)))
- X ((not (math-realp n))
- X (math-reject-arg n 'realp))
- X ((not (math-realp m))
- X (math-reject-arg m 'realp))
- X ((not (math-num-integerp m))
- X (if (and (math-num-integerp n) (math-negp n))
- X (list 'calcFunc-choose n m)
- X (math-div (calcFunc-fact (math-float n))
- X (math-mul (calcFunc-fact m)
- X (calcFunc-fact (math-sub n m))))))
- X ((math-negp m) 0)
- X ((math-negp n)
- X (let ((val (calcFunc-choose (math-add (math-add n m) -1) m)))
- X (if (math-evenp (math-trunc m))
- X val
- X (math-neg val))))
- X ((and (math-num-integerp n)
- X (Math-lessp n m))
- X 0)
- X (t
- X (math-inexact-result)
- X (let ((tm (math-trunc m)))
- X (or (integerp tm) (math-reject-arg tm 'fixnump))
- X (if (> tm 100)
- X (math-div (calcFunc-fact (math-float n))
- X (math-mul (calcFunc-fact (math-float m))
- X (calcFunc-fact (math-float
- X (math-sub n m)))))
- X (math-with-extra-prec 1
- X (math-choose-float-iter tm n 1 1))))))
- )
- X
- (defun math-choose-iter (m n i c)
- X (if (and (= (% i 5) 1) (> i 5))
- X (math-working (format "choose(%d)" (1- i)) c))
- X (if (<= i m)
- X (math-choose-iter m (1- n) (1+ i)
- X (math-quotient (math-mul c n) i))
- X c)
- )
- X
- (defun math-choose-float-iter (count n i c)
- X (if (= (% i 5) 1)
- X (math-working (format "choose(%d)" (1- i)) c))
- X (if (> count 0)
- X (math-choose-float-iter (1- count) (math-sub n 1) (1+ i)
- X (math-div (math-mul c n) i))
- X c)
- )
- X
- X
- ;;; Stirling numbers.
- X
- (defun calcFunc-stir1 (n m)
- X (math-stirling-number n m 1)
- )
- X
- (defun calcFunc-stir2 (n m)
- X (math-stirling-number n m 0)
- )
- X
- (defun math-stirling-number (n m k)
- X (or (math-num-natnump n) (math-reject-arg n 'natnump))
- X (or (math-num-natnump m) (math-reject-arg m 'natnump))
- X (if (consp n) (setq n (math-trunc n)))
- X (or (integerp n) (math-reject-arg n 'fixnump))
- X (if (consp m) (setq m (math-trunc m)))
- X (or (integerp m) (math-reject-arg m 'fixnump))
- X (if (< n m)
- X 0
- X (let ((cache (aref math-stirling-cache k)))
- X (while (<= (length cache) n)
- X (let ((i (1- (length cache)))
- X row)
- X (setq cache (vconcat cache (make-vector (length cache) nil)))
- X (aset math-stirling-cache k cache)
- X (while (< (setq i (1+ i)) (length cache))
- X (aset cache i (setq row (make-vector (1+ i) nil)))
- X (aset row 0 0)
- X (aset row i 1))))
- X (if (= k 1)
- X (math-stirling-1 n m)
- X (math-stirling-2 n m))))
- )
- (setq math-stirling-cache (vector [[1]] [[1]]))
- X
- (defun math-stirling-1 (n m)
- X (or (aref (aref cache n) m)
- X (aset (aref cache n) m
- X (math-add (math-stirling-1 (1- n) (1- m))
- X (math-mul (- 1 n) (math-stirling-1 (1- n) m)))))
- )
- X
- (defun math-stirling-2 (n m)
- X (or (aref (aref cache n) m)
- X (aset (aref cache n) m
- X (math-add (math-stirling-2 (1- n) (1- m))
- X (math-mul m (math-stirling-2 (1- n) m)))))
- )
- X
- X
- ;;; Produce a random 10-bit integer, with (random) if no seed provided,
- ;;; or else with Numerical Recipes algorithm ran3 / Knuth 3.2.2-A.
- (defun math-init-random-base ()
- X (if (and (boundp 'var-RandSeed) var-RandSeed)
- X (if (eq (car-safe var-RandSeed) 'vec)
- X nil
- X (if (Math-integerp var-RandSeed)
- X (let* ((seed (math-sub 161803 var-RandSeed))
- X (mj (1+ (math-mod seed '(bigpos 0 0 1))))
- X (mk (1+ (math-mod (math-quotient seed '(bigpos 0 0 1))
- X '(bigpos 0 0 1))))
- X (i 0))
- X (setq math-random-table (cons 'vec (make-list 55 mj)))
- X (while (<= (setq i (1+ i)) 54)
- X (let* ((ii (% (* i 21) 55))
- X (p (nthcdr ii math-random-table)))
- X (setcar p mk)
- X (setq mk (- mj mk)
- X mj (car p)))))
- X (math-reject-arg var-RandSeed "*RandSeed must be an integer"))
- X (setq var-RandSeed (list 'vec var-RandSeed)
- X math-random-ptr1 math-random-table
- X math-random-cache nil
- X math-random-ptr2 (nthcdr 31 math-random-table))
- X (let ((i 200))
- X (while (> (setq i (1- i)) 0)
- X (math-random-base))))
- X (random t)
- X (setq var-RandSeed nil
- X math-random-cache nil
- X i 0
- X math-random-shift -4) ; assume RAND_MAX >= 16383
- X ;; This exercises the random number generator and also helps
- X ;; deduce a better value for RAND_MAX.
- X (while (< (setq i (1+ i)) 30)
- X (if (> (lsh (math-abs (random)) math-random-shift) 4095)
- X (setq math-random-shift (1- math-random-shift)))))
- X (setq math-last-RandSeed var-RandSeed
- X math-gaussian-cache nil)
- )
- X
- (defun math-random-base ()
- X (if var-RandSeed
- X (progn
- X (setq math-random-ptr1 (or (cdr math-random-ptr1)
- X (cdr math-random-table))
- X math-random-ptr2 (or (cdr math-random-ptr2)
- X (cdr math-random-table)))
- X (logand (lsh (setcar math-random-ptr1
- X (logand (- (car math-random-ptr1)
- X (car math-random-ptr2)) 524287))
- X -6) 1023))
- X (logand (lsh (random) math-random-shift) 1023))
- )
- (setq math-random-table nil)
- (setq math-last-RandSeed nil)
- (setq math-random-ptr1 nil)
- (setq math-random-ptr2 nil)
- (setq math-random-shift nil)
- X
- X
- ;;; Produce a random digit in the range 0..999.
- ;;; Avoid various pitfalls that may lurk in the built-in (random) function!
- ;;; Shuffling algorithm from Numerical Recipes, section 7.1.
- (defun math-random-digit ()
- X (let (i)
- X (or (and (boundp 'var-RandSeed) (eq var-RandSeed math-last-RandSeed))
- X (math-init-random-base))
- X (or math-random-cache
- X (progn
- X (setq math-random-last (math-random-base)
- X math-random-cache (make-vector 13 nil)
- X i -1)
- X (while (< (setq i (1+ i)) 13)
- X (aset math-random-cache i (math-random-base)))))
- X (while (progn
- X (setq i (/ math-random-last 79) ; 0 <= i < 13
- X math-random-last (aref math-random-cache i))
- X (aset math-random-cache i (math-random-base))
- X (>= math-random-last 1000)))
- X math-random-last)
- )
- (setq math-random-cache nil)
- X
- ;;; Produce an N-digit random integer.
- (defun math-random-digits (n)
- X (cond ((<= n 6)
- X (math-scale-right (+ (* (math-random-digit) 1000) (math-random-digit))
- X (- 6 n)))
- X (t (let* ((slop (% (- 900003 n) 3))
- X (i (/ (+ n slop) 3))
- X (digs nil))
- X (while (> i 0)
- X (setq digs (cons (math-random-digit) digs)
- X i (1- i)))
- X (math-normalize (math-scale-right (cons 'bigpos digs)
- X slop)))))
- )
- X
- ;;; Produce a uniformly-distributed random float 0 <= N < 1.
- (defun math-random-float ()
- X (math-make-float (math-random-digits calc-internal-prec)
- X (- calc-internal-prec))
- )
- X
- ;;; Produce a Gaussian-distributed random float with mean=0, sigma=1.
- (defun math-gaussian-float ()
- X (math-with-extra-prec 2
- X (if (and math-gaussian-cache
- X (= (car math-gaussian-cache) calc-internal-prec))
- X (prog1
- X (cdr math-gaussian-cache)
- X (setq math-gaussian-cache nil))
- X (let* ((v1 (math-add (math-mul (math-random-float) 2) -1))
- X (v2 (math-add (math-mul (math-random-float) 2) -1))
- X (r (math-add (math-sqr v1) (math-sqr v2))))
- X (while (or (not (Math-lessp r 1)) (math-zerop r))
- X (setq v1 (math-add (math-mul (math-random-float) 2) -1)
- X v2 (math-add (math-mul (math-random-float) 2) -1)
- X r (math-add (math-sqr v1) (math-sqr v2))))
- X (let ((fac (math-sqrt (math-mul (math-div (calcFunc-ln r) r) -2))))
- X (setq math-gaussian-cache (cons calc-internal-prec
- X (math-mul v1 fac)))
- X (math-mul v2 fac)))))
- )
- (setq math-gaussian-cache nil)
- X
- ;;; Produce a random integer or real 0 <= N < MAX.
- (defun calcFunc-random (max)
- X (cond ((Math-zerop max)
- X (math-gaussian-float))
- X ((Math-integerp max)
- X (let* ((digs (math-numdigs max))
- X (r (math-random-digits (+ digs 3))))
- X (math-mod r max)))
- X ((Math-realp max)
- X (math-mul (math-random-float) max))
- X ((and (eq (car max) 'intv) (math-constp max)
- X (Math-lessp (nth 2 max) (nth 3 max)))
- X (if (math-floatp max)
- X (let ((val (math-add (math-mul (math-random-float)
- X (math-sub (nth 3 max) (nth 2 max)))
- X (nth 2 max))))
- X (if (or (and (memq (nth 1 max) '(0 1)) ; almost not worth
- X (Math-equal val (nth 2 max))) ; checking!
- X (and (memq (nth 1 max) '(0 2))
- X (Math-equal val (nth 3 max))))
- X (calcFunc-random max)
- X val))
- X (let ((lo (if (memq (nth 1 max) '(0 1))
- X (math-add (nth 2 max) 1) (nth 2 max)))
- X (hi (if (memq (nth 1 max) '(1 3))
- X (math-add (nth 3 max) 1) (nth 3 max))))
- X (if (Math-lessp lo hi)
- X (math-add (calcFunc-random (math-sub hi lo)) lo)
- X (math-reject-arg max "*Empty interval")))))
- X ((eq (car max) 'vec)
- X (if (cdr max)
- X (nth (1+ (calcFunc-random (1- (length max)))) max)
- X (math-reject-arg max "*Empty list")))
- X ((and (eq (car max) 'sdev) (math-constp max) (Math-realp (nth 1 max)))
- X (math-add (math-mul (math-gaussian-float) (nth 2 max)) (nth 1 max)))
- X (t (math-reject-arg max 'realp)))
- )
- X
- ;;; Choose N objects at random from the set MAX without duplicates.
- (defun calcFunc-shuffle (n &optional max)
- X (or max (setq max n n -1))
- X (or (and (Math-num-integerp n)
- X (or (natnump (setq n (math-trunc n))) (eq n -1)))
- X (math-reject-arg n 'integerp))
- X (cond ((or (math-zerop max)
- X (math-floatp max)
- X (eq (car-safe max) 'sdev))
- X (if (< n 0)
- X (math-reject-arg n 'natnump)
- X (math-simple-shuffle n max)))
- X ((and (<= n 1) (>= n 0))
- X (math-simple-shuffle n max))
- X ((and (eq (car-safe max) 'intv) (math-constp max))
- X (let ((num (math-add (math-sub (nth 3 max) (nth 2 max))
- X (cdr (assq (nth 1 max)
- X '((0 . -1) (1 . 0)
- X (2 . 0) (3 . 1))))))
- X (min (math-add (nth 2 max) (if (memq (nth 1 max) '(0 1))
- X 1 0))))
- X (if (< n 0) (setq n num))
- X (or (math-posp num) (math-reject-arg max 'range))
- X (and (Math-lessp num n) (math-reject-arg n 'range))
- X (if (Math-lessp n (math-quotient num 3))
- X (math-simple-shuffle n max)
- X (if (> (* n 4) (* num 3))
- X (math-add (math-sub min 1)
- X (math-shuffle-list n num (calcFunc-index num)))
- X (let ((tot 0)
- X (m 0)
- X (vec nil))
- X (while (< m n)
- X (if (< (calcFunc-random (- num tot)) (- n m))
- X (setq vec (cons (math-add min tot) vec)
- X m (1+ m)))
- X (setq tot (1+ tot)))
- X (math-shuffle-list n n (cons 'vec vec)))))))
- X ((eq (car-safe max) 'vec)
- X (let ((size (1- (length max))))
- X (if (< n 0) (setq n size))
- X (if (and (> n (/ size 2)) (<= n size))
- X (math-shuffle-list n size (copy-sequence max))
- X (let* ((vals (calcFunc-shuffle
- X n (list 'intv 3 1 (1- (length max)))))
- X (p vals))
- X (while (setq p (cdr p))
- X (setcar p (nth (car p) max)))
- X vals))))
- X ((math-integerp max)
- X (if (math-posp max)
- X (calcFunc-shuffle n (list 'intv 2 0 max))
- X (calcFunc-shuffle n (list 'intv 1 max 0))))
- X (t (math-reject-arg max 'realp)))
- )
- X
- (defun math-simple-shuffle (n max)
- X (let ((vec nil)
- X val)
- X (while (>= (setq n (1- n)) 0)
- X (while (math-member (setq val (calcFunc-random max)) vec))
- X (setq vec (cons val vec)))
- X (cons 'vec vec))
- )
- X
- (defun math-shuffle-list (n size vec)
- X (let ((j size)
- X k temp
- X (p vec))
- X (while (cdr (setq p (cdr p)))
- X (setq k (calcFunc-random j)
- X j (1- j)
- X temp (nth k p))
- X (setcar (nthcdr k p) (car p))
- X (setcar p temp))
- X (cons 'vec (nthcdr (- size n -1) vec)))
- )
- X
- (defun math-member (x list)
- X (while (and list (not (equal x (car list))))
- X (setq list (cdr list)))
- X list
- )
- X
- X
- ;;; Check if the integer N is prime. [X I]
- ;;; Return (nil) if non-prime,
- ;;; (nil N) if non-prime with known factor N,
- ;;; (nil unknown) if non-prime with no known factors,
- ;;; (t) if prime,
- ;;; (maybe N P) if probably prime (after N iters with probability P%)
- (defun math-prime-test (n iters)
- X (if (and (Math-vectorp n) (cdr n))
- X (setq n (nth (1- (length n)) n)))
- X (if (Math-messy-integerp n)
- X (setq n (math-trunc n)))
- X (let ((res))
- X (while (> iters 0)
- X (setq res
- X (cond ((and (integerp n) (<= n 5003))
- X (list (= (math-next-small-prime n) n)))
- X ((not (Math-integerp n))
- X (error "Argument must be an integer"))
- X ((Math-integer-negp n)
- X '(nil))
- X ((Math-natnum-lessp n '(bigpos 0 0 8))
- X (setq n (math-fixnum n))
- X (let ((i -1) v)
- X (while (and (> (% n (setq v (aref math-primes-table
- X (setq i (1+ i)))))
- X 0)
- X (< (* v v) n)))
- X (if (= (% n v) 0)
- X (list nil v)
- X '(t))))
- X ((not (equal n (car math-prime-test-cache)))
- X (cond ((= (% (nth 1 n) 2) 0) '(nil 2))
- X ((= (% (nth 1 n) 5) 0) '(nil 5))
- X (t (let ((dig (cdr n)) (sum 0))
- X (while dig
- X (if (cdr dig)
- X (setq sum (% (+ (+ sum (car dig))
- X (* (nth 1 dig) 1000))
- X 111111)
- X dig (cdr (cdr dig)))
- X (setq sum (% (+ sum (car dig)) 111111)
- X dig nil)))
- X (cond ((= (% sum 3) 0) '(nil 3))
- X ((= (% sum 7) 0) '(nil 7))
- X ((= (% sum 11) 0) '(nil 11))
- X ((= (% sum 13) 0) '(nil 13))
- X ((= (% sum 37) 0) '(nil 37))
- X (t
- X (setq math-prime-test-cache-k 1
- X math-prime-test-cache-q
- X (math-div2 n)
- X math-prime-test-cache-nm1
- X (math-add n -1))
- X (while (math-evenp
- X math-prime-test-cache-q)
- X (setq math-prime-test-cache-k
- X (1+ math-prime-test-cache-k)
- X math-prime-test-cache-q
- X (math-div2
- X math-prime-test-cache-q)))
- X (setq iters (1+ iters))
- X (list 'maybe
- X 0
- X (math-sub
- X 100
- X (math-div
- X '(float 232 0)
- X (math-numdigs n))))))))))
- X ((not (eq (car (nth 1 math-prime-test-cache)) 'maybe))
- X (nth 1 math-prime-test-cache))
- X (t ; Fermat step
- X (let* ((x (math-add (calcFunc-random (math-add n -2)) 2))
- X (y (math-pow-mod x math-prime-test-cache-q n))
- X (j 0))
- X (while (and (not (eq y 1))
- X (not (equal y math-prime-test-cache-nm1))
- X (< (setq j (1+ j)) math-prime-test-cache-k))
- X (setq y (math-mod (math-mul y y) n)))
- X (if (or (equal y math-prime-test-cache-nm1)
- X (and (eq y 1) (eq j 0)))
- X (list 'maybe
- X (1+ (nth 1 (nth 1 math-prime-test-cache)))
- X (math-mul (nth 2 (nth 1 math-prime-test-cache))
- X '(float 25 -2)))
- X '(nil unknown))))))
- X (setq math-prime-test-cache (list n res)
- X iters (if (eq (car res) 'maybe)
- X (1- iters)
- X 0)))
- X res)
- )
- (defvar math-prime-test-cache '(-1))
- X
- (defun calcFunc-prime (n &optional iters)
- X (or (math-num-integerp n) (math-reject-arg n 'integerp))
- X (or (not iters) (math-num-integerp iters) (math-reject-arg iters 'integerp))
- X (if (car (math-prime-test (math-trunc n) (math-trunc (or iters 1))))
- X 1
- X 0)
- )
- X
- ;;; Theory: summing base-10^6 digits modulo 111111 is "casting out 999999s".
- ;;; Initial probability that N is prime is 1/ln(N) = log10(e)/log10(N).
- ;;; After culling [2,3,5,7,11,13,37], probability of primality is 5.36 x more.
- ;;; Initial reported probability of non-primality is thus 100% - this.
- ;;; Each Fermat step multiplies this probability by 25%.
- ;;; The Fermat step is algorithm P from Knuth section 4.5.4.
- X
- X
- (defun calcFunc-prfac (n)
- X (setq math-prime-factors-finished t)
- X (if (Math-messy-integerp n)
- X (setq n (math-trunc n)))
- X (if (Math-natnump n)
- X (if (Math-natnum-lessp 2 n)
- X (let (factors res p (i 0))
- X (while (and (not (eq n 1))
- X (< i (length math-primes-table)))
- X (setq p (aref math-primes-table i))
- X (while (eq (cdr (setq res (cond ((eq n p) (cons 1 0))
- X ((eq n 1) (cons 0 1))
- X ((consp n) (math-idivmod n p))
- X (t (cons (/ n p) (% n p))))))
- X 0)
- X (math-working "factor" p)
- X (setq factors (nconc factors (list p))
- X n (car res)))
- X (or (eq n 1)
- X (Math-natnum-lessp p (car res))
- X (setq factors (nconc factors (list n))
- X n 1))
- X (setq i (1+ i)))
- X (or (setq math-prime-factors-finished (eq n 1))
- X (setq factors (nconc factors (list n))))
- X (cons 'vec factors))
- X (list 'vec n))
- X (if (Math-integerp n)
- X (if (eq n -1)
- X (list 'vec n)
- X (cons 'vec (cons -1 (cdr (calcFunc-prfac (math-neg n))))))
- X (calc-record-why 'integerp n)
- X (list 'calcFunc-prfac n)))
- )
- X
- (defun calcFunc-totient (n)
- X (if (Math-messy-integerp n)
- X (setq n (math-trunc n)))
- X (if (Math-natnump n)
- X (if (Math-natnum-lessp n 2)
- X (if (Math-negp n)
- X (calcFunc-totient (math-abs n))
- X n)
- X (let ((factors (cdr (calcFunc-prfac n)))
- X p)
- X (if math-prime-factors-finished
- X (progn
- X (while factors
- X (setq p (car factors)
- X n (math-mul (math-div n p) (math-add p -1)))
- X (while (equal p (car factors))
- X (setq factors (cdr factors))))
- X n)
- X (calc-record-why "*Number too big to factor" n)
- X (list 'calcFunc-totient n))))
- X (calc-record-why 'natnump n)
- X (list 'calcFunc-totient n))
- )
- X
- (defun calcFunc-moebius (n)
- X (if (Math-messy-integerp n)
- X (setq n (math-trunc n)))
- X (if (and (Math-natnump n) (not (eq n 0)))
- X (if (Math-natnum-lessp n 2)
- X (if (Math-negp n)
- X (calcFunc-moebius (math-abs n))
- X 1)
- X (let ((factors (cdr (calcFunc-prfac n)))
- X (mu 1))
- X (if math-prime-factors-finished
- X (progn
- X (while factors
- X (setq mu (if (equal (car factors) (nth 1 factors))
- X 0 (math-neg mu))
- X factors (cdr factors)))
- X mu)
- X (calc-record-why "Number too big to factor" n)
- X (list 'calcFunc-moebius n))))
- X (calc-record-why 'posintp n)
- X (list 'calcFunc-moebius n))
- )
- X
- X
- (defun calcFunc-nextprime (n &optional iters)
- X (if (Math-integerp n)
- X (if (Math-integer-negp n)
- X 2
- X (if (and (integerp n) (< n 5003))
- X (math-next-small-prime (1+ n))
- X (if (math-evenp n)
- X (setq n (math-add n -1)))
- X (let (res)
- X (while (not (car (setq res (math-prime-test
- X (setq n (math-add n 2))
- X (or iters 1))))))
- X (if (and calc-verbose-nextprime
- X (eq (car res) 'maybe))
- X (calc-report-prime-test res)))
- X n))
- X (if (Math-realp n)
- X (calcFunc-nextprime (math-trunc n) iters)
- X (math-reject-arg n 'integerp)))
- )
- (setq calc-verbose-nextprime nil)
- X
- (defun calcFunc-prevprime (n &optional iters)
- X (if (Math-integerp n)
- X (if (Math-lessp n 4)
- X 2
- X (if (math-evenp n)
- X (setq n (math-add n 1)))
- X (let (res)
- X (while (not (car (setq res (math-prime-test
- X (setq n (math-add n -2))
- X (or iters 1))))))
- X (if (and calc-verbose-nextprime
- X (eq (car res) 'maybe))
- X (calc-report-prime-test res)))
- X n)
- X (if (Math-realp n)
- X (calcFunc-prevprime (math-ceiling n) iters)
- X (math-reject-arg n 'integerp)))
- )
- X
- (defun math-next-small-prime (n)
- X (if (and (integerp n) (> n 2))
- X (let ((lo -1)
- X (hi (length math-primes-table))
- X mid)
- X (while (> (- hi lo) 1)
- X (if (> n (aref math-primes-table
- X (setq mid (ash (+ lo hi) -1))))
- X (setq lo mid)
- X (setq hi mid)))
- X (aref math-primes-table hi))
- X 2)
- )
- X
- (defconst math-primes-table
- X [2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89
- X 97 101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 179 181
- X 191 193 197 199 211 223 227 229 233 239 241 251 257 263 269 271 277
- X 281 283 293 307 311 313 317 331 337 347 349 353 359 367 373 379 383
- X 389 397 401 409 419 421 431 433 439 443 449 457 461 463 467 479 487
- X 491 499 503 509 521 523 541 547 557 563 569 571 577 587 593 599 601
- X 607 613 617 619 631 641 643 647 653 659 661 673 677 683 691 701 709
- X 719 727 733 739 743 751 757 761 769 773 787 797 809 811 821 823 827
- X 829 839 853 857 859 863 877 881 883 887 907 911 919 929 937 941 947
- X 953 967 971 977 983 991 997 1009 1013 1019 1021 1031 1033 1039 1049
- X 1051 1061 1063 1069 1087 1091 1093 1097 1103 1109 1117 1123 1129 1151
- X 1153 1163 1171 1181 1187 1193 1201 1213 1217 1223 1229 1231 1237 1249
- X 1259 1277 1279 1283 1289 1291 1297 1301 1303 1307 1319 1321 1327 1361
- X 1367 1373 1381 1399 1409 1423 1427 1429 1433 1439 1447 1451 1453 1459
- X 1471 1481 1483 1487 1489 1493 1499 1511 1523 1531 1543 1549 1553 1559
- X 1567 1571 1579 1583 1597 1601 1607 1609 1613 1619 1621 1627 1637 1657
- X 1663 1667 1669 1693 1697 1699 1709 1721 1723 1733 1741 1747 1753 1759
- X 1777 1783 1787 1789 1801 1811 1823 1831 1847 1861 1867 1871 1873 1877
- X 1879 1889 1901 1907 1913 1931 1933 1949 1951 1973 1979 1987 1993 1997
- X 1999 2003 2011 2017 2027 2029 2039 2053 2063 2069 2081 2083 2087 2089
- X 2099 2111 2113 2129 2131 2137 2141 2143 2153 2161 2179 2203 2207 2213
- X 2221 2237 2239 2243 2251 2267 2269 2273 2281 2287 2293 2297 2309 2311
- X 2333 2339 2341 2347 2351 2357 2371 2377 2381 2383 2389 2393 2399 2411
- X 2417 2423 2437 2441 2447 2459 2467 2473 2477 2503 2521 2531 2539 2543
- X 2549 2551 2557 2579 2591 2593 2609 2617 2621 2633 2647 2657 2659 2663
- X 2671 2677 2683 2687 2689 2693 2699 2707 2711 2713 2719 2729 2731 2741
- X 2749 2753 2767 2777 2789 2791 2797 2801 2803 2819 2833 2837 2843 2851
- X 2857 2861 2879 2887 2897 2903 2909 2917 2927 2939 2953 2957 2963 2969
- X 2971 2999 3001 3011 3019 3023 3037 3041 3049 3061 3067 3079 3083 3089
- X 3109 3119 3121 3137 3163 3167 3169 3181 3187 3191 3203 3209 3217 3221
- X 3229 3251 3253 3257 3259 3271 3299 3301 3307 3313 3319 3323 3329 3331
- X 3343 3347 3359 3361 3371 3373 3389 3391 3407 3413 3433 3449 3457 3461
- X 3463 3467 3469 3491 3499 3511 3517 3527 3529 3533 3539 3541 3547 3557
- X 3559 3571 3581 3583 3593 3607 3613 3617 3623 3631 3637 3643 3659 3671
- X 3673 3677 3691 3697 3701 3709 3719 3727 3733 3739 3761 3767 3769 3779
- SHAR_EOF
- true || echo 'restore of calc-comb.el failed'
- fi
- echo 'End of part 10'
- echo 'File calc-comb.el is continued in part 11'
- echo 11 > _shar_seq_.tmp
- exit 0
- exit 0 # Just in case...
- --
- Kent Landfield INTERNET: kent@sparky.IMD.Sterling.COM
- Sterling Software, IMD UUCP: uunet!sparky!kent
- Phone: (402) 291-8300 FAX: (402) 291-4362
- Please send comp.sources.misc-related mail to kent@uunet.uu.net.
-